Abstract

A Framework based on Domain Object Interface
for Web Services in heterogeneous Distributed

Environments

Lim, Eun-Cheon
Department of Multimedia Engineering
The Graduate School
Sunchon National University

(Supervised by Prof. Sim, Choun Bo)

An object oriented software defines many objects and is operated by
communication between objects. Object oriented softwares in distributed
environment are constructed by web service. It requires searchablity,
effectiveness, reliability, stability, and availability for services and
accessibility to domain objects and execution performance to implement
successfully web services in distributed environment.

In practice, it is hard to realize all of the fundamental architecture to
build a web service application so that researches for the development of
web services with frameworks has kept going on. Researches for web
service framework resolved overall problems that are occurred on
registration and search for the web service, communication protocol,
orchestration, and execution, but developer should consider much about
standard web service technic if he or she manipulate business logic with
web services. The problem is occurred when displaying data sources to
users in legacy web application after making a connection between a web

service framework and existing data sources, namely, the problems are

mapping between domain objects and data sources, connection between
local business logic, configuration and deployment of the business logic for
web service, and complexity of the execution. It requires developers
additional complexity because they cannot use existing development model
so that service provider need a lightweight framework that minimizes wide
fluctuation of existing development model.

In this paper, we propose a Meta model of the web service for devising
convenience on searching, configuration, execution and a Domain Object
Interface(DOI) to handle Meta model and design and implement a
Distribution Oriented Knowledge-base of Dynamically Operable Web
Servcies(DOKDO-WS) framework based on the DOI. The proposed
DOKDO-WS framework offer a web service registry to enroll and search
business logics in a domain and a web service browser to identify and
execute and a functionality to orchestrate dynamically or statically. Since
service is added if that pass the verification process so only executable
services should be shown in runtime. Local services is executed by
reflection and remote services is executed by the SOAP proxy instances
and services that navigated by web service browser is executed by
popular web browsers. At the same time, the meta model of the proposed
DOKDO-WS framework is defined by XML Schema and is divided into
data meta model and service meta model. The service meta model defines
local and remote services. The data meta model is used to generate
automatically tables, views and stored procedures that have shown high
performance in the most persistence operations. Domain objects are
transferred in form of the XML by XML transformers and are viewed to
user on an appropriate GUI by XSL'T processing.

We evaluate performance of the service registry at the factor of

processing time to verify the effectiveness, stability, accessibility of the
framework and carry out performance evaluation about the transaction
processing in a bank application to evaluate processing power of the DOIL.
In service registry, average times on enrolling local services, enrolling
remote services, modifying services, and removing services takes times on
average each 59.0646ms, 40.2767ms, 114.2569ms, and 52.14263ms.
Operations on the single service are based on hashing and takes only
0.0012ms on the average. The operation of the enumeration on the total
services are increased or decreased in proportion to the number of
services, it takes 0.03212ms when there are 10 services registered. In
performance evaluation on processing of the domain objects, we performed
tests on the factors that are DBMS, ORM framework, the type of
persistence operations. In the MS-SQL, Oracle DBMS, the proposed DOI
surpasses other frameworks in insert, modify, delete, composite, and select
operation, especially at select operation that is frequently used in web
service environment the DOI wins an overwhelming result. However, in
the MySQL DBMS, get a sluggish performance, which caused by faults on
tested JDBC driver. The DOI is faster 5 times than other ORM
frameworks in evaluation on the C language. The DOI make 073 errors on
100,000 requests. Based on performance evaluation, the DOKDO-WS verify
that has higher effectiveness, stability, and reliability as a service registry

and an execution engine.

Key Words : web service framework, web service registry, web service

orchestration, web service execution engine, domain object, ORM, SOA

I. Introduction

1. Outline

To interact among services as reducing coupling of business logics in
distributed environment, several technologies have been repeatedly
growing up and falling away. Existing distributed environment technology
has developed their own course for transparency of the location and
inter—compatibility. However, it is hard to make an environment that is not
dedicated to the specific development environment and a user should define
an interface on each platform for searching objects, and then the user
should pass a message about the object through broker objects. Moreover,
domain specific services such as session management, and security
problem should be designed and realized in user own way. XML-based
standard web service that is implemented for the purpose of distributed
environment has appeared to solve those problems.

The web services have drawn up a plan and implemented based on the
SOA(Service Oriented Architecture) which is an expansion version of the
CBD(Component based Development) methodology, which is realized by
distributed environment technologies in the past, on the view of the
Service. Fields on the Web Service spin off main research fields such as
the registration and search[1-10], the protocoll5, 9, 11-13], the
orchestration[14-26], the execution[23-30], and the framework which is
offering a research on easy development environment to service providers
by integrating particular fields keeps going on.

An web service application performs modeling using a domain model.

Domain objects are used to apply domain models into practical business
logic. Domain objects require not only modeling process on the repository
to be used but also transformed into other form to communicate with users
on the run time so that the web service frameworks is needed to perform
research additionally on representation, transmission, modification of
domain objects. Service providers cannot help escaping from modeling on
domain objects whether the domain model would be replaced to semantic
ontology[44-49]. Because the domain model is represented by the XML in
standard web service technology, research about mapping between the
XML and object is keep going on[49].

Proposed DOKDO-WS framework provides a web service registry which
offers functionalities such as dynamical add, modify, and remove web
service. Web service can be checked and modified by web service browser
and stored based on proposed meta model which resides in main memory
for better performance and stored periodically themselves into persistence
layer to minimize data loss by service failure. Services stored in a domain
object of meta model is verified on time domain object entered in main
memory so that user can see only executable services on the run time.

The DOKDO-WS framework supports dynamic service orchestration.
Firstly, orchestration in service view layer aggregates functional groups
which includes several service units. In contrast, orchestration in service
execution layer composes using component aggregation, AOP, generating
dynamic proxies. Single or composed operations makes service unit by
wrapping. In external execution, every web services can be executed by
web browsers and SOAP based proxies. In inner execution, local services
can be executed by passing messages to service instances, but remote

services executed by generated SOAP proxies. This framework supports

session functionality in part provides methodology to realize web service
that never required any changes on existing development environment.

A data model of domain object in business logic is ER(Entity Relation)
based. Declared data model automatically generates table and views in
supported RDBMS and stored procedure to manipulate this data model.
Persistence operations in business logic 1s performed only by stored
procedures which is auto generated or defined by service provider. Service
provider can access easily and quickly to persistence layer by declaring
minimum configuration and using APIL

This paper composes as follows. In chapter 2, we examine carefully
existing researches related with registration, search, orchestration,
execution, protocol and framework of web service, declaration of the
domain object, and mapping to the persistence layer. In chapter 3,
describes proposed framework. In chapters 4 and 5, present
implementations and performance evaluation, then form a conclusion and

open up future works.

2. Motivation

Web service providers need a useful and high-scalability framework.
These features can be achieved by supporting methodology that can reuse
existing infrastructure of service development and providing compatibility
with standard web service technologies.

The framework could check services then dynamically orchestrate and
execute. Service registry that provided by the framework could register,
search, and modify web services without particular constraints. In general,

service providers want to offer only exactly matched services with specific

domain so that dynamically check and modify functionalities for services
are mandatory.

The framework should provide interface for XML to easily manipulate
protocol. Messages from external of the web services are transferred by
HTTP based SOAP whose inner message uses XML based protocol. The
service provider can define protocol in the inner part of the SOAP and
transfer messages.

It is an important problem to maintain states. When executing web
services using existing web browsers, concept of the session is needed.
There are no problems to process simple operation such as input, modify
and delete with stateless service instances but if the process requires to
verify user access privilege on resources which is used on specific services
or to maintain association with previous executions, then stateful service
instance is necessary.

Finally, the framework should provide method which makes domain
modeling easy. Every application needs a domain modeling. Even though
domain models are widely spread out, those model in business logic layer
1s processed in a single service domain. In this process, it is necessary to
be automated on mapping among domain object, repository, and
presentation language.

Most of web application is storing model in DBMS so writing and
modifying SQL is repeated. Domain specific processes cannot be automated
so should be developed manually. Repeated persistence operation such as
create, read, update, and delete operation can be automatically generated
and mapping between model and presentation language can be automated,

which decouples greatly business logic and domain model.

II. Related Work

Proposed framework requires wide understanding about the web service
and the domain object. For those reasons, we examine problems mentioned

in each research in detail, then draw main problems.

1. Web Service

1) Register and Search Web Services

Distributed object technology before web services use brokering and
bridging which is centralized method to search and execute. However, in
web service based environment, web service repositories not only spread
out but also use the Match-making based search algorithms[1]. A process
to build web service repository is to construct UDDI[3]. Even though
dispersibility of the web service requires also transparency of the location,
it needs to divide into Local Services and Remote Services for improving
performance of service execution engine. Since local services guarantee
higher performance and reliability, important services should be deployed
as the Local Services. Because Local Services can be accessed in
component level, those don’t need to use UDDI based register and search.
This occurs degradation of performance instead. Furthermore, shortage of
the standard UDDI is very abstract standard, fundamental search
functionality, no guarantee on registered service QoS, no service caching,
and so on[6].

Web Services searched mainly by IOPE(Input, Output, Precondition,

Effect) that is part of the service profile components in OWL-S. In [10],

algorithms and data structures that searches exactly matched services are
suggested. Because same word, however, can be translated differently
according to domain change, algorithms and data structures which is
suitable for semantic web is suggested to infer by changing domainl7, 8,
15]. Web service users not always consider IOPE to search services but
sometimes can take additional meta data into account. This information
can be added or modified in SOAP message at the time of registration,
execution, and changing request on web services[5, 9], which helps
framework to search services. However external agent, web crawler or
search engine i1s more effective and practical than embedded search
functionality in web service framework[4, 6]. Even though after services
completely searched and executed, service provider cannot guarantee any
QoS. One of major reasons is that it is filled with many unexecutable
remote service if the service registry 1s static type as time goes by.
Remote services should be verified at the time of assigned main memory
and applied naturally upon current modifications when business logics are
changed[17]. Features that needed to service registries are as follows:

Firstly, meta data should contain descriptions about service. Service
providers may not add description on services to be searched if they gain
little interest from those services. On the other hand, if they can get much
profits from services, they want to expose their explanation in detail to the
search engine.

Secondly, service user needs automated verification on non—functional
factors. Because most of the service users give higher priority at the
factor of high performance, meta data are basically needed to inform users
about performance of services.

Thirdly, web services in same domain should have same life cycle with

service container of server. When the container initialized, meta data about
services are also Initialized to use through domain objects. And service
will be unable to search and execute from outside after container or server
shut down. This guarantees services always searchable and executable in
run time.

Fourthly, endpoints of local services should be generated automatically.
This protects web service applications from wrong execution by the root
and reduces overhead occurrence while generating and modifying service
meta data. Meanwhile, there is no need for secondary repositories and
modeling for meta data.

Fifthly, common interface to access service map which can inquire
executable services from current domain should be offered. It is mainly
responsible for administrator or developer among service consumer to
search and compose meta data of the web services in the past. Because for
the most normal users who did not access and use directly these services,
web service could not gain popularity. So for gaining popularity, easy
executable interface is required. Besides, practical requirements for web
service registry can be summarized as follows[2]:

- Reuse of the existing infrastructure

- Lightweight approach : use additional complex softwares whether or
not

- Complete executable example

Services belong to specific domain

User notification : applying modification of dynamic web services

Integration with other web service registries
- Accurate content : more accurate if the service strongly coupled with

service provider

- Control of the content : registry offered directly by web service
provider

- easy accessibility and identifiable service description

2) Web Service protocol

Web service can communicate with messages using protocols in
application layer. Web service users request messages to and response
messages from service provider using protocol such as XML based SOAP
over HTTP.

The Axis and .NET framework supports basically the SOAP which
requires XML based request and response, it is easy to add additional
scheme to application domain[b, 9, 11-13, 50].

In [5, 9], research shows definition of a protocol focused on service
search functionality. In [11, 12], researchers define WS-Eventing based
protocol which follows ECA(Event-Condition-Action) concept to
communicate among devices and design and realize a framework which
uses this protocol. If realtime application is needed, protocol can be defined
in network layer[13].

One of the problems about definition of the protocol is that existing web
browser allows HTTP based request and response but cannot perform
directly SOAP request and it is hard to request with adding SOAP
message to HTTP based request body. This is the main reason why
service instance cannot respond to requester in legacy web environment
even though the instance has been generated.

There is a problem about the serialization and deserialization, the
marshalling and unmarshalling for a long time that data types used in web
service protocol should define manually. XML schema is highly scalable

but primitive data structure is different in each framework. Newer protocol

should be defined as that extends the SOAP and is available to request

and response upon legacy HTTP.

3) Web service orchestration

After the web service is searched, orchestration process is needed to
recreate service unit into valuable service. The service orchestration has
proposed by dynamic and static method. The dynamic method can add or
modify services in run time. The static method can be mainly divided into
two parts. The former reads about operations from static declaration then
declare composite component before searching to expose interface from
this component. The latter composes pre-defined operations into new
structures of the service model. The static method has higher performance
but can drop the service availability and flexibility. On the other hand, the
dynamic method has lower performance than the static method but it has
higher availability and equal performance if there are caches available to
use. In that reason, the static method is better if service is local service.
On the contrary, the dynamic method is better with remote service.

Existing researches show how to compose and execute web services
using standard language such as WS-BPEL, WS-CDLI[14, 21, 23]. In [14],
they try to map between meta model of the framework and BPEL
standard. In [16], they show an implementation about functional change of
the web service through the AOP(Aspect Oriented Programming). These
are needed to verify service at the step of service binding[18]. In[19],
services composed using genetic algorithm based on followings:

- Execution Price : a service requester must pay for the operation.

- Execution duration : sum of processing time and transmission time

- Reliability : technical measurement, related to the hardware and/or

software configuration of web services and the network connections

between requesters and providers.

— Availability : probability that the service is accessible.

- Reputation : system’s trustworthiness mainly depends on the end
user’s experience.

In [17], It is error—prone to bind services when using only WS-BPEL so
that data structure in verifying services such as CPN(Colored Petri Net),
compatibility verification is proposed then research for mapping to
standard or dedicated language is progressed to automate[l7, 20-22].
Moreover, WS-BPEL, WSCI can be adopted to compose web services.

It is very important to verify semantic whether service exists or do not.
In many service orchestration algorithm. Because the verification process
guarantees right operation, it can also offer stability and availability of the
services. This verification should be performed during initializing meta
data and before use some services so it keep away degradation of the

performance.

4) Web service execution

The web services can be executed without sharp drop in performance
rather than existing distributed technology[51]. A web service execution
engine generally creates a service instance per request and destroys or
caches it after the execution. In [23], a tool to execute web service from
WSDL after composing is proposed. In [26], an example of the network
management use Java-based library of the web service which follows
standard is suggested. In [27], an example of the mail server and client
uses .NET framework which requests web services by asynchronous
method is realized.

If the execution engine needs an interaction with user during an

execution, it causes selective problem on how to create the user context

and obtain user parameters. Furthermore, interaction with users are not
discontinuous so the context that connects current operation and next
should be stored in the specific persistence layer. For that reason, the
engine needs an identification method that to keep transaction between
operations even though service instances were destroyed, which needs
concept of the session. Most client proxies of the web services that uses
the SOAP can use session ID attached in HTTP header[28]. In [24, 25], a
method shows how two-way interaction can be used in session concept. It
processes transaction with session and TARGET performs as proxy
through the firewall and NAT.

If a session keeps in several operations, a service instance can receive
security services from external context. In [29], an algorithm is proposed
which verifies access privileges to the resources when a behavior executes
that is described by declaration of the choreography. The W3C suggests
specification such as WS-CDL and WSCIL In [30], it suggests a
XACML(eXtensible Access Control Markup Language) based management
server of the web service to integrate functionality of the XML based
message encryption and digital signature and then extends SAML(Security
Assertion Markup Language) to verify delegation which is passed to
service provider. In addition, the execution engine should offer an easy
developing method, definition of the primitive data type, serializer of the

domain object, and marshaller of execution context.

5) Framework

The purpose of the framework is that provides architecture to integrate
overall functionality about register, search, protocol, orchestration,
execution, and verification of the service. It consumes much time and cost

if a developer of the business logic implements whole concept of the web

service.

The dynamic web service composition, which functionality of the web
service 1s described by the WSDL and the WSCI expresses the interaction
among web services, uses the Petri-Net to verify web services[31]. The
ISCF organizes itself a distributed web service architecture which uses
OWL-S in the business logic layer and the data access layer, which
describes data model by ISCFTasks[32]. The SASO involves user,
compose, execute, and service layer and the user layer contains semantic
modeling, service query model, service deployer, and service executor,
which uses ontology derived from WORDNET to explain relations between
concept and concept. Execution of the service is performed by the BPEL4;j
library[33]. In Bottom-Up approach, it selects out a problem occurred in
the BPWS4] engine, which processes the BPEL4WS, as static method on
the service composition. Because it cannot chooses service through
automatic reasoning so it generates knowledge base by service profile
component of the DAML-S where service can be searched by the
DQL(DAML Query Language), which reduces cost of the service
composition when statically composes. In theory, because the composition
tries to automatically compose though service providers are unknown
about functional factors, a fully implemented semantic is needed. However,
because fully implemented semantic that applies various alteration in
society and culture and comprehension about whole domain between
service provider and users isn't everywhere, existing approaches can be
applied only experimental services except mission critical services[34]. In
the METEOR-S framework, a service represented to the OWL by the
Constraint Representation Module and estimate service dependencies,

querying and cost by the Cost Estimation Module. At this time, it

estimates cost for procurement, delivery time, compatibility with other
suppliers, relationship with supplier, reliability of the supplier’s service, and
response time of the supplier's service as the cost of the service itself.
And the user has to specify aggregation operators for QoS parameter such
as the aggregation about single process execution time, cost of invoking all
the services in the process, cumulative reliability, cumulative availability,
and domain specific QoS. The constraint optimizer optimizes based on
whole constraints. The runtime module converts the abstract process and
service templates to an executable BPEL which is executed by BPWS4]
engine[35]. In the template-based approach, single composed process is
represented using template. It introduce abstract process type to extend the
OWL-S. By composing declaration of abstract processes and preferences
through the Perform statement, it tries to match and rank services. The
HTN-DL is one of the template-based approach. To remove a weak point
from the HTN planning, it defines extended HTN-DL[36]. A Java and
LISP based framework, IRS-III(Internet Reasoning Service), which can
generate WSMO based semantic web service is proposed. It offers a light
welght approach to deploy semantic web services and executes suitable
web service for user demand. A web service is declared by extending goal
of the WSMO. The IRS-1III provides browser, WSMO editor, deployment
client, and execution client. Those tools can compose statically, services
cannot keep session among executions[37, 38]. The SHOP2 converts
process model and composes process of the OWL-S into dedicated domain
model and planning of the SHOPZ and then executes plans. The SHOP?2 is
a HTN planning system and operates based on the AI planning. The
planning on Golog-like languages that is based on situation calculus is

performed offline. It indicates that the planning starts after information-—

providing Web services to simulate in state of correctly matched between
planning and execution since world can be changed during planning and
execution. Furthermore, an execution example shows that the SHOP2
Planner generates plans based on personal schedule and then executes
those[39]. The SWORD provides static composition and web server as
independent from the standard technology such as SOAP, WSDL, UDDI,
RDF, DAML. It can plan for specific service based on rules which are
often used in logical language such as the Prolog and then inquires
services by rules. Plans are stored based on ER model in form of XML so
that input and output of the service can be organized more than one
entity[40]. The Plaengine framework composes services based on cases
which have service states of the initialization, goal, and progress in form
of the logical expression. The interceptor can handle much situations
among service execution at before execution, after execution, exception,
and recovery. If the service execution fails, then it tries recomposition.
Thus, the stability and availability is moderately high[41]. In the SWS
compares many frameworks which looked around before in this paper[42].
The web service framework which uses UML and OWL-S generate
manually service profile from description of use cases then search services
using algorithm of the dynamic evolution. After that, those services are

bound and executed[43].

2. Domain object

Web service is implemented in a domain[45] which makes it unavoidable
to do data modeling in specific domain. A web based service application

creates schema in DBMS after data modeling[48]. The persistence code to

manage the SQL statements which is built from schema is repeatedly
written. However, this repeated work is apt to produce lower system
structure in productivity and performance. A web service framework
should cut down those work and provide decoupling between objects and
the DBMSI38, 44]. Furthermore, data modeling also requires simple and
duplicated process such as generation of the meta model, create, read,
update, and delete of data. To solve these problems ORM frameworks are
suggested. The iBatis performs as a SQL Map and the Hibernate replace
writing SQL statement to OO modeling. The .NET framework supports
the DataFillAdapter which can generate XML schema from DataSource
and fill the DataSet with data values. Those ORM frameworks would not
expect and process even complex operations for the specific model so
complex persistence operation should be implemented manually.

A framework needs to perform mapping between persistence layer and
the XML instead of objects defined by classes which are one of the largest
causes for decreasing productivity since it performs only data transfer
object(DTO). Because basic unit of the message is the XML in the web
service environment, object state should be represented as an XML
document, which needs an interface for the domain object.

In [48], data represented by the XML are mapped to class of the object
oriented language. Firstly, the XElement method is similar to the DOM
when managing the XML but user should register a class for specific
XML elements to the handler object which is used to parse XML
document. When the handler object parses a specific element, registered
class is going to be initialized then values are assigned into that object.
Objects that will be registered to the handler object must extend the

XElement class.

Secondly, the NaturalXML method attaches meta data to each class.
Meta data express relationship between a XML and a field of class. This
method has a defect that elements are out of order. Data can be
transferred to the XIR which supports Base64 encoding but this form is
more tedious and complex than the XML or the JSON.

A domain object is an instance which represents model and view used in
services. The domain object can be declared in variable form from the
view layer to the persistence layer, which it can be handled if transformed
into appropriate form in specific layer when communicating among layers.
Every domain object would not keep XML form, if XML form is
maintained by force that causes problem on performance. However, the
domain object used in web service framework should maintain XML form
to transfer messages fluently rather than to gain more performance. So it
1s fundamental for the functionality to transform from the primitive type to
Object into XML form.

In [45], the Naked Objects framework is proposed. This framework can
dynamically register service and use it. If services are modified, then a
GUI and persistence layer reflects changes so service modeling is
performed automatically. In [46-48], an idea to separate service and data

code is suggested.

III. DOKDO-WS Framework

1. Entire framework structure

Proposed framework is made up of four layer as like Fig. 1. Layers are

partitioned based on the MVC pattern. The view layer offers Uls to

normal service user and the execution layer takes charge of processing

flows and transmitting data. The service and data model layer provides a

domain model which

1) Data model layer

1s employed in entire system.

1

Senvice View Layer

—— <<Apglicstion>> —= XsLT
Web Senvice = Transformer
Browser -

WSDL can be
transformed into |
Web senice
Execution Form

— |

Senice Execution Lay+
Execution

Cache Mansger
ormer
(-
Engine s

centrsl ofthe Default Senioe h,ec(\ Execmm Engine Session Manager

B s

Servioe Model Layer

—L— <<DCiConfigurstar=> [——1 ;/‘ssgfcmw“‘»
WSDLRepositor)
< Business Logic
O ‘@_45

Remote Senioss

|
|
|
Repesitory by 31

Depcatay L? sa::& Business Logic Prototype
Every s @vio= storedin \
WSDLRepos it | y’l \ 5
| / Data Mocel I.sye\

<nnr‘ |

<<F
3 View Configurstor

<<DO|C.onﬁguatu>>
Model Conﬁgus!or

DBMS Seners

DOl Framawork manipul ste whole
model and view

Fig 1. Entire framework structure(diagram)

This layer provides a service which handles modeling for data used in

the business logic and for views offered to service users.

Most of

operations are delegated to the Domain Object Interface(DOI) framework
which has an interface for loading, searching, modifying, and storing about
XML based domain object. By using this interface, a service provider
configures declaration of the domain object model and view on services
and the DOKDO-WS framework uses the DOI to generate domain model

of the business logic.

2) Service model layer

This layer accesses remote document of the WSDL and then services
would be verified. If it was successfully verified, then services registered
in runtime repository. For local services, prototype of the business logic
that is obtained from components of the business logic makes WSDL
objects at initializing the framework. Because the framework only register
verified service to the runtime repository, service instances surely

guarantees the execution.

3) Service execution layer

This layer decides policy and strategy on how to manage them when
request for execution arrives. That type of execution is optional such as
synchronized or asynchronized type, whether session maintains or not, the
cache policy, and an instantiating method. There are three service at
subordinate position of the service execution engine, which is the cache

manager, session manager, and service injector.

(1) Cache Manager
Since some operations of the service can be called frequently in short

time, instantiating an instance per call causes the performance of the
service to degrade greatly so the cache manager caches instances within a

given period if the service has been often initialized.

(2) Session Manager

Concept of the session could be needed on specifically composed
services. Data which needs to keep their state could be chosen in the
service declaration time. If the session is enabled, the session manager
must restore previous session value before calling and storing changed

value into session repository again.

(3) Service Injector
A service injector injects fundamental services into a web service

instances. This service makes feasible to compose dynamically services in
the execution layer. Basically injected service is the session manager,

which attaches functionality for the session into service instances.

4) Service view Layer

Domain objects in the service view layer take XML based messages.
However, a web service provider generally processes results from the
service execution layer to GUI For this, this framework uses the XSLT to
translate into a view model which user wanted to. A browsing service and
executing browsed operation service which the service providers can use

1s also provided.

2. Design of the framework

1) Use case

Fig. 2 shows a usecase of the service providing developer whose role is
that defines declaration of the model and view for services will be

provided and realizes controller classes which represent the business logic

based on this declaration. After that, declaration for controller classes
should be registered in a service model. When controller class develops,
choose whether expose each operations of the service or whole service and

whether use session or not.

Q <<include>> O

%ﬁDeﬁne Model And View Define Controller configuration

configuration << .o

\ <<extend>> extend

e P (e A =D
Developer

Declare POJO Style Clasg-.. /nnotate seniceifitwilbe Annotate operation if it wil be
5 published published

<<extend>> A : <<pxtend=> z

Annotate service if it will use a Annotate operation if it will use a
session session

Fig 2. Use case of the Service providing developer

Fig. 3 shows a usecase of the service assembling developer. A service
assembling developer checks operations from meta service and then

generates proxies based on the WSDL. Generated proxies composes newly

/List Meta Senices List Operations
<<extend>>
oS

Service Assemble Reference WSDL Generate Proxy

Developer

Asemble Service Operation

operations into valuable services.

Fig 3. Use case of the Service assembling developer

Fig. 4 shows a wusecase of the DOKDO-WS framework. The

DOKDO-WS framework generates service models from service

configuration which service providing developer and assembling developer
were defined after verifying each local and remote services. This process
includes two sub-processes of the generating WSDL objects and service
models. After that it generates model and views in RDBMS of the
persistence layer. Stored procedures are also generated at the same time
which is employed as processing logic for persistence such as create, read

for only searchable columns, update, and delete.

-

.-/ Generate Insert SP
<<includez>"
oo <<include>> ... /Q

<<include>> """ . Generate Update SP
a7 oY chae
%]Generate Model And View Generate Stored Procedure(SP)™"~.. c4jncludes> O

Generate Delete SP

DOKDOW. N xeincludes> >©
<<inC|Ud?,>.>-"‘7©

"+, Generate Select All SP

O Generate WSDL <<extend>;‘\ C

- .. <<include>> s
Generate Controller with Web ~-..S=INcluGe *. . Generate Select By Id SP

Senvice _},Q 4

Generate Meta Senvice Generate Select By Searcheable

Column

Fig 4. Use case of the DOKDO-WS framework

2) State diagram

Fig. 5. shows a state diagram for initialization of the container. In the
first state, the Context Initalize, other framework can be initialized. At
next, in the Generate Controller state, the execution engine will be
initialized. In the Load Services state, declaration of the service is
transformed into the service model. In the Generate WSDL state, WSDL
objects are created in each service model. Next state is decided by
configuration of the service model, which is either the Generate Model and

view or the Context Initialized state which is final state of this diagram.

@ Init Servlet Container

Context
Initialize

Generate
Controller

Generate
WSDL

Generate
Model

Generate
View

Load
Services

Context
Initialized

Fig 5. State diagram for initialization of the container

Fig 6. shows a state diagram for execution of the web services. External
client would be in the List Services state after context initialized through
the state transition in the Fig. 5. Services are displayed in groups by their
own namespaces. In the WSDL Queryable state, WSDL document can be
obtained from WSDL objects. In the List Operations state, the client can
enumerate available local and remote operations. In the next state,
operations are filled with parameters. After then, the execution engine
invokes services. In the final state, client shows the invocation results

from the web service.

Context
Initialized
List List Fills an invocation
WSDL Queryable
Invoke
Service

Cther Platform except Java can
generate their web sewice))
proxies from queried WSDL. @ Display Invocation Results

p

Fig 6. State diagram for execution of the web services

3) Design of the component

(1) Design of the business logic layer
@ DOI
Fig. 7 is a class diagram for the DOI. The IDomainObject interface is for

whole domain objects which extends IDOMAccessor and IDataAccess
Object interfaces. The IDOMAccessor interface is an interface for
managing all XML based domain objects from configuration to execution.
The IDataAccessObject interface is an interface for loading, modifying, and
removing domain objects in persistence layer. A default implementation of
the IDomainObject is offered by the AbDomainObject which is an abstract
class and initializes the Document object for handling current state of the
domain object by the DOM and builds the XPath object for searching
Nodes from XML document.

O [1 []
O IDOMAcces annotation configuration
IDataAcces -
sObject
select() _| _|
~‘Iodad0 appendToSeletedNode() m -
‘up ate() QrermoveSelectedNode) controller semice
delete() yzlidate()
?etText\/aIueO
setAttribut)
O SsetiMLSource()
DomainObie SgetDocument() transformer
INAE - QgetSelectedElement() O
SgetChildren()
QgetAttribute) NarespaceContext

QgetChildTextContent()

¥getNamespaceContext() (from namespace)

QgetNamespaceURI()
<<abstract>> {

J : getPrefix()
AbDomainObject ‘getPreﬁxesO

®<<constructor=> AbDomainObject()

&

StringDomainObject <<yses> | POINamespace
Context
®<<constructor=> StringDomainObject()
®<<constructor=> StringDomainObject() Sput()

Fig 7. Class diagram for the DOI

® Database Facade

Fig. 8 is a class diagram for the database facade which has a role to
manage access to the DBMS. The IDatabaseFacade interface encapsulates
functionality which the Database Access Object(DAO) has to be
implemented. The ICloseable interface means some child objects would be
closed but user of those objects don’t need to call this method because this
method will be invoked automatically by implementing the Template
Method pattern which makes the DBMS connection closed unnoticeably.
The AbDatabaseFacade class is an abstract class which provides basic
implement for the IDatabase interface. The AbJDBCDatabaseFacade
abstract class 1s an abstract class which provides fundamental
functionality for the objects which employs especially the JDBC of the
Java language among many connection methods of the DBMS. For the
convenience, this framework provides implemented classes for the Oracle,

MS-SQL, and MySQL DBMS which has been often used.

O o

ICloseable IDatabaseFacade

Sclose() ®setsQLQ)
®setParameter()
Sexecute()
®execute()
®executeSP()
SexecuteUpdate()
SexecuteUpdate()
®addBatch()
®executeBatch()
®registerOutParameter()

<<abstract>>
AbDatabaseFacade

SdoExecute()
$doExecuteUpdate()
SdoExecute()
$doExecuteUpdate()
SdoExecute()
$doExecuteUpdate()
SdoExecuteBatch

S<<abstract>> connect() 1
$c<abstract>> doExecuteSP() jdbcfacade
doExecuteSP()

[JINDIDatabaseF acade
;

<<abstract>>
AbJDBCFacade

®<<constructor>> JNDIDatabaseF acade() |

| @loadProperties()
| @ setPropenties()
SgetPropPath()
®setPropPath()
Sgetld)
Ssetld()
SgetPw()

SsetPw() (S
°
getJdbeDriver()
®cetldbcDriver() MySQLDstsbassF scads
Sgeturigy Grom jdbctacade)
Ssetr| —————————

0
$<<abstract>> buildCennectionString()

l DirectURLD H OracleD: H MSSQLDatabaseFacade
o rom jabctacade)
f
it

m jdbefacad

I 1

|
L 1

Fig 8. Class diagram for the database facade

@ Configurator

Fig. 9. shows a class diagram for the configurator which reads
configuration about the model of the service and data to use in runtime. It
defines ADbDOIConfigurator that is an abstract class by extending
AbDomainObject that implements basic functionality of the DOI to handle
all configuration in this framework. For configurating DBMS, it defines an
abstract class, AbDatabaseConfigurator, which is divided into two abstract
classes for the configurator of the model and view. Finally, concrete
configurators are defined which can be created as service instances.
Depends on where execution engine, some configurator must be declared
and the DOIServletConfigurator class is provided for the Java web

environment.

==abstract=»
AbDomainObect
Yo doi)

%< <constructor== AbDomainOkject()

&

==abstract=» O
AbDOIConfigurator
SerdetContextListener

?’« abstract=> checkTypeattibutelnRootElem ent() (fo m s2nvlet)

?‘« abstract=> generateD ataStructure() e
$ezinal== setConfigurationP ath() Qcontext Destroyed()
¥setlocalC onfigurationP ath() ®contextIntislized)
®ezinal=> checkTypeAttributelnRootE lement()

roR___7

z<ahstract=> DOISenrdetC onfigurator
AbDatabase Configurator
@gen erateController()
QaddBatch() &Pueneratei odel()
‘getDat abaseFacade() Qgen erateview()
‘setDatabaseFacadeO
==abstract=> =<=abstract=>
AbModeiConf gurator AbView Configurator
(from model) (fom view)
?’check() Qezabstract=» check()

OracleM odelDOIConigurator Oraclev}momonigu rator

(fom mggel) view)
:L MSS QLM odelilc onfigurator | 0 Ms SQLVi}x\D OIConfigurat or
(fom model) (romview)
My SQLModelDOIConigurator] MySQLVYiewDOIConigurmtor
(fom model) (from view)

Fig. 9. Class diagram for the configurator

(2) Design of the service meta model layer and the service execution layer

Fig. 10. is a class diagram for repository of the service model and a
class diagram executor to manage meta data in there. The service
repository provides interface to store or create a WSDL document to
execute services at a later time, to enumerate or query services, and to list
operations in each service.

The executor has a purpose to execute services and realizes functions of

the cache manager, session manager, and service injector that those are

sub programs. The executor to process local and remote services exists
separately and all executor should be implemented as derived from

DOIXMLExecutor because all data basically has the XML form.

==ghstract=»
AbDQIConfigurator WSDL

{rom cont

$getDocumentation
P <<abstract=> checkTypeAttrihutelnRootElement() g 0

% .
P <<abstract-> generateDataStructure ~§§§f§?“p°§§f$§30peramn ”
$<<final=» setConfigurationPath() ’isWebMelhod{)
$setlocalConfigurationP ath(S gethiaxOc curs)
$=<final=> checkTypeAttributelnRootElement) Ygethessages)
$gethethadElements(e
‘getNamespaceso
:getNamespacesAsSting() Serviet
. getNillable()
DOIVWSDLR epository <<initiate>> :getPomo Gromservlet)
________________ getPorfType Operations(
:g:eetgoodso 1 $4etS0AP11 BoundedOperations() :ddoF?e‘O
Sisty $4etS0AP12BoundedOperations() opost)
‘getTargetName space()
O SuetSTypeName)
SputNamespace()
|IExecutor % setDocumentation()
7| ®getEndPaintURLD HifpSenviet
T .7 | ¥setEndPaintURL) rom tty)
Sexecute() “suse»» . $setSeniceClass()
$setSeniceClass)
¥ setseniceName)
<=abstract=> $setTargetName space(
AbProxyDOIExecutor i % << Override~> toStrin g DOIServetEx
4 ecutor
Pinvoke()
PPqueryOperation)
&queryOverloadedOperation)
&oenerateParameteriatchCount() feinitiate== DOIXMLExecutorFactory
PaddParametervalues() DOIXMLExecutor | . .
PPgeneratelnvokeTarget) ®z=static=» newlnstance(
$getRealParameterObject(4‘3 .
$<<0veride== toString()
$getResult) DOIHTMLExe DOlwebServiceExecutor
:getMethudSO cutor
<=abstract=> generateResult
. ! 0 7 A
DOIWSDLExecutor DOIOperationsExecutar

DOIRemoteExecutor

Fig. 10. Class diagram for the WSDL repository and executor

Fig. 11. is a class diagram for the transformer to change the data in the
domain object into XML form before passing to the service view layer.
When service uses external data from current execution context, the
TypeSerializer service converts it into a domain object. In the contrary,
when the execution engine passes a domain object to other layer, it will be

turned into a string or a form of XML document.

O

IDOITransfor
mer<T>

N

The DOICollectionTransformer can
transform Object recursively.

]

s erializeFrom String ()

.
.

‘transformToXMLO .
transformToString()
SsetTagName() ;
transformTowWebs ervice XML()]
DOICollectionTra
nsfromer
DOlintegerTrans| (DOIDoubleTransf| [DOIDefaultTrans ||DOIStringArrayTra
farmer ormer former nsformer 7
g i s<initiater> ioitiatess -
DOIFloatTransf| -, s, <<initigte>> ¢ <ifitiates> DOIDoubleStringArray
ormer <<initiate>><<initiate>> ot Transformer
Mgy . - e
<<initiate>> ~-~-. | DOITypeSeri| ..---"~ <<initiate>>
alizer

Fig. 11. Class diagram for the transformer

(3) Design of the service view layer

Fig. 12. is a class diagram for the XSLT processor which is used to

transform a XML document into other XML document. As using this

service, the XML document can be converted into appropriated form to the

service view layer. If a string-based stream was simply returned, there is

no need to use the XSLT transformation in the view layer but have to be

a client application which can recognize the stream.

JXSLTProcessor

Sinitialize() <<use>>

Stransform() fo-c-eoee-eoe >+ ---
SgetML) 0 t
‘transforme:{) ncumen

<<initiate>>

DOIXMLExecutor

(from controllef

Fig 12. Class diagram for the XSLT processor

4) Design of the meta model

(1) Main meta model

Configurations about every domain object used in the DOKDO-WS
framework are originated from the main meta model of Fig. 13. This model
1s declared as one of the XML Schema. Every meta model instance must
have a type value of the specific model in the root node’s type attribute,
which is to check service providers whether they have known exactly the
type of meta model instances and declare them. The
modelAndViewGenerate attribute is used to decide the next state of the
Generate WSDL state in Fig. 5. If it has the true value, it generates the
data model layer. A service provider must declare only one main meta
model in a domain because local service repository keeps an entry point
for all services and performs hashing based algorithm in searching. In
every model, the localPath and remotePath attribute represents input and
output path and the id attribute is an identifier for specific model in model

declaration.

(%] doiConfigurationType [&] controllerType
@ type (typeType) @® localPath string
@ modelandViewGenerate string @ remotePath string
@® basefolder string «[€] documentation [0..1] string

[e] controller [1..1] controllerType
- [€] models [1..11 modelsType | [&] modelsType |
(€] views [1..1] viewsType | (el model [1..=] modelType |

[&] viewsType

Fig. 13. The main meta model

Fig. 14. shows model for the domain data model and view model. The
domain data model and view model has similar declaration. The domain
data model expresses all information of the DBMS based persistence which

1s used in domain of the web service. The dbmsName attribute can apply

only the name of the DBMS which this framework supports. The diName
attribute is used to specify a name which is used to look up a service from
a directory service by directory interface. Because the reference

implementation of the framework uses Java language, so attribute name is

jndiName.
models Type modelType
[e] model [1,.+] modelType dbmsMame (dbmsNameType)
dillame stting
. localPath string
= rermote Path string
id 1]
[e] documentation [0.11 string

Fig. 14. The domain data model and view model

Fig. 15 is an example of the main meta model.

<?xml version="1.0" encoding="UTF-8"7?>

<doicfg:doi xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:doi="http://javawide.com/DOIconfiguration" xsi:schemalocation=
"http://javawide.com/DOIconfigration..." type="configuration" model
AndViewGenerate="true">

<doicfg:controllers>

<doicfg:controller localPath="protocol:///path/filename" />

</doicfg:controllers>
<doicfg:models>
<doicfg:model localPath="protocol:///path/filename" dbmsName="Some

DBMS" jndiName="jdbc/doi somedbms" />
<doicfg:views>
<doicfg:view remotePath="protocol:///path/filename" dbmsName="Some

DBMS" jndiName="jdbc/doi somedbms" />

</doicfg:views>

</doicfg:doi>

Fig. 15. An instance of the main meta model

(2) Sub concrete model

@D Service model

Fig. 16 shows the service model. The service model is a model to
represent a single process which can be thought as the Controller of the
MVC pattern. All business logic have equal form without any association
whether it is local or remote service. Commonly used nodes are as follows.
The 1d attribute of the controllers element performs as namespace and the
name attribute of the controller element is a unique identifier of services.
The documentation element describes service and the targetNamespace
element means a namespace of the caller.

The serviceClass element is used only in the local service and it means
a module name which is employed to create service instance. And the
endPointURL means the end-point URL to receive the SOAP request from
the outside. Lastly, let’s look into elements which are used only in remote

service, the wsdlURL is a URL for service description to execute.

controllers Type controllerType
@ id ID @ name string
«[€] controller [1,.+] controllerType [e] documentation [0..1] string
[e] serviceClass [0..1] string

- [e] targetNamespace [0.1] anyURI
(€] endPointURL [0..1] anyURI
[e] wsdIURL [0..1] anyURI

Fig. 16. Concrete service model

® Data model

Fig. 17 shows the concrete data model. The data model is a model to
represent object and data that is used in a single process which can be
thought as the Model and View of the MVC pattern. The DOKDO-WS
framework stores basically data in the RDBMS so the data model has a

form of the ER model. The data model has many table or view elements in

a database element. The framework generates the domain data model in
DBMS based on the concrete data model. If value of the forceRemove
attribute is true, then the model would be forcibly deleted and recreated.
The primaryKey element has the same type with the column element but
it represents primary key of the ER model. In a declaration, a composite
key is not allowed because the configurator service creates internally an
artificial key which make a composite key from the internal artificial key
and a user defined primary key. Attributes in the columnType is used to
specify a constraint, data type, and name when mapping the value from

persistence to a domain object.

tableType columnType
@ name string @ name string
@ forceRemove string @ sqlType string
[e] documentation [0,.1] string @ length string
[€] primaryKey [0..1] columnType constraint string
[e] column [1..#] columnType

Fig. 17. Concrete data model

Fig. 18 shows the concrete view model which is used in the service
view layer. The forceRemove attribute means the view would be forcibly
deleted and recreated like the data model. The mapTo attribute can modify
a name of data which is exposed to the view layer. The generate attribute
specifies the type of a stored procedure what persistence operation is going
to be generated. Only the update and delete operation are basically

generated for the inner id column but this attribute allows for other

columns.
viewType columnType
@ name string @ name string
@ forceRemove string @ sqlType string
[¢] documentation [0..1] string @® length string
[e] primaryKey [0..1] columnType ® mapTo string
(€] column [1..+] columnType @ generate string

Fig. 18. Concrete view model

IV. Implementation and performance evaluation

1. Environment of the implementation and performance

evaluation

In the performance evaluation of this paper, we uses the AMD Athlon 64
bit Dual Core 2.0Ghz for the CPU and the Windows XP Professional SP3
for the OS and the JDK 1.6.0 Update 10 version for the programming
environment. The physical memory i1s 2.75GB and total 3.6 GB in view of
the virtual memory. The network is connected in wire and uses the same
localhost with the HTTP. We use the HttpClient 4.0 Beta 1 version to
request specific service.

The performance evaluation carried out quantitatively and qualitatively
on the point of the web service and the domain object. In the quantitative
performance evaluation of the web service, the request count is 5,000 and
the intensity is about 30 threads/sec. The measure is only the execution
time in the server because all other conditions are equal.

In the quantitative performance evaluation of the domain object, the
request count is 100,000 and the intensity is about 30 threads/sec with a
bank application but the JOXM is always failed with that condition so we
adjust the request count to 20,000 and the intensity to 10 threads/sec.
Changed factors are type of persistence, operation and ORM framework.
The measure is the executed time of the server, received time of the client,
and network duration. The network duration is calculated by subtracting
executed time of the server from received time of the client. Types of

persistence are the JOXM, MS-SQL, Oracle, and MySQL and we

compared their performance on the iBatis and Hibernate. The type of
persistence operations are INSERT, UPDATE, DELETE, COMPOSED,
READ. The measure for INSERT, UPDATE, DELETE, and COMPOSED
operation is execution time of the server and only for the READ operation
we use execution time of the server, receive time of the client, and
network duration. If execution time of the server is greater than 500ms, it
may result when the garbage collection is performed so we exclude that

values.

2. Results of the Performance Evaluation

1) Web service side

(1) Qualitative evaluation
Table 1 and 2 compares existing web service framework with the

DOKDO-WS. To use standard web service, it employs the UDDI as a
repository of meta data. There is a need to own repository of meta data to
provide the semantic web service. Because the centralized method for
repository inquires descriptions of the service execution from a global
service registry so the distributed method is more appropriate to the web
service. The lightweight approach means if the framework automates the
development process that there is no need for any additional tools or
maintaining the existing development method. In the existing framework,
only the dynamic web service composition and the UML based evolution
framework provides this measure. The language of meta model means
compatibility with domain model of the other web service framework. To
achieve this, framework would use standard language for domain modeling

or provide an interface to handle general domain model. The SWORD

provides such interface. The method of the composition affects largely to
performance, convenience, and learning cycle of the framework. The
composition of the web service in most of existing framework generates a
knowledge base using rules of the logical language then the framework
searches and composes services. However it needs more learning time and
a mapping tool or API to integrate with standard language. The AI method
can compose with minimal configuration but has lower performance. The
static method is the easiest and is more flexible but it has a weak point
that the service provider should declare all configuration. The execution
description is a language that explains services and operations. Using

standard WSDL and BPEL has more scalability.

table 1. Comparison with other web service frameworks - I

Dynamic Web
. Bottom-Up Template-
Items Service ISCF SASO METEOR-S
. Approach based
Composition
Storage of OWL-S DQL
UDDI . SDL UDDI HTN
Meta data Library Server
Centralize
(@) (@) X X (@) (@)

d storage

Light

weight O X X X x x
approach

Meta

WORD
modeling WSCI OWL-S NET DAML-S RosettaNet OWL-S
Language
Compositi
= Rule Rule)
on Rule Base Static Rule base HTN
base base

method

Execution WSDL/ | BPEL, BPEL,
BPEL BPEL4WS HTN-DL

Descriptor ICL WSDL WSDL

table 2. Comparison with other web service frameworks - II

UML
. DOKDO-W
Items IRS-III SHOP2 SWORD | Plaengine SWS based <
Evolution
Persistent . Ontology .
Storage of | OCML Domain SWSs . Domain
) HTN XML)) Repositor .
Meta data | Library Registry registry Registry
Plan y
Centralize
(@) (@) (@) (@) X @) X
d storage
Light
weight X X X X X O O
approach
Meta SHOP2 Own
WSMO, . Every OWL-S, Every
modeling Domain(fro Meta-Mo OWL-S
UPML XML OWL XML
Language m OWL-S) del
Compositi
Rule)
on b HTN Rule base Al Al Al Dynamic
ase
method
WSDL,
Execution WebL, WS-BPE .
WSMO WSDL . BPEL4WS | WSDL Function
Descriptor Filter L
Structure

(2) Quantitative evaluation
0 to 3 errors occurs on average in 100,000 executions of the persistence

operation. Fig. 18. shows operations on the service registry of the
DOKDO-WS. Operation time of the service registration is increasing as
time goes by. This operation takes much time only when service meta
data is written to physical disk. The time slope of the local service is
steeper than the remote service because the local service verifies existence
of the service by trying to instantiate on each added service module. In
general, the service modification takes the longest time. Because this
operation 1s composed of two operations which one searches location of the
service and another modifies it. The removal operation takes little time as
time goes by. In Fig. 19. average time of operations at registration of local

services, registration of remote services, modification and removal of

services are each 59.0646ms, 40.2767ms, 114.2569ms, and 52.14263ms.

Searching operation of the single service takes only 0.0012ms as average.

Enumerating operation is in portion to the number of services. When 10

services have registered, it takes 0.03212ms as average.

1000 T "
£

o
o
L
23
b
4
Ll .
»
[S
F
*

Y
e ® T *
" .o.*\ S & - .
Y i |4 i S ’ Y
800 e %n A A " 3 A . A bl
UL PP G S S U B S S . A of e Bt
By ie ry A & > the 303 .
o A L & % A ahk LY 2% A A
o @ * * e R e £ 5
4 en ° & a2 B s % ee
'y ® A a AoA B . s .
° e N A WA - VA T R Y R X
o 90 © & i A & Sy L o 4 o
Ey Z E e . &
(ms) 600 1gs X e e 7 & go""”’ * 3 et
R o 2 4 - Lo tee AN,) s “om
s A

3000

o 1000
Requests

+ addlocalService maddRemoteService 4 modifyService @ removeService

Fig. 19. Operations on the service registry of the DOKDO-WS

2) Domain object side

(1) Qualitative evaluation
Table 3 and 4 compares existing researches related to the domain object

with the DOKDO-WS. Most of researches provide their own API about

connection and persistence. Storage method is divided into the file system,

XML DB, RDBMS. However, it is not realistic to use the file system for
persistence layer because processing of concurrency problem or
transaction, security is basically required in the web service environment.
In the mapping relation, represents how framework restore objects from
the persistence layer and save objects to persistence layer. The creation

method of the domain object is mainly manual method. Automatic method

raises the productivity. The learning cycle expresses how much it is easy

based on the number of tools, concepts, and modules. For example, The

Low means that it provides lightweight approach.

Table 3. Comparison with other research related to the domain object - I

. . Universal
. . Runtime Decoupling .
Items Taming XML | Naked Object Relation Data
Generation OO Layer
Source
Connection External
API API API API
Method ORM
Persistence External
X X @) (@)
API ORM
Persistence) .
File File RDBMS RDBMS RDBMS
Type
Object->Dyna .
. . . . | DBMS<->0bj
Mapping Object<->XM | Properties->O mic DBMS<->0bj
. . ect<->Formatt
Relation L or XIR bject<->GUI | Proxy<->Persi ect .
ed String
stence
Creation
method for Manual(Mars . Depend on
] Automatic Manual Manual
Domain halling) ORM
Object
Leaming .
Low Low Middle Low Low
difficulty
Table 4. Comparison with other research related to the domain object - II
Items JOXM iBatis Hibemate DOKDO-WS
Connection
API API API API
Method
Persistence
(@) (@) (@) (@)
API
Persistence
o XML DBMS RDBMS RDBMS RDBMS
ype
Mapping XMLDBMS<->0Ob | DBMS<->SQLMa | DBMS<->E-RMap | DBMS<->ModelM
Relation ject->XML p<->Object <->Object ap<->Object
Creation
method for . .
. Manual(XPath) Manual Manual Semi-Automatic
Domain
Object
Leaming .
Low Low High Low
difficulty

(2) Quantitative evaluation

@ INSERT, UPDATE, DELETE, COMPOSED operation
Fig. 20. shows performance evaluation of the INSERT, UPDATE,

DELETE, and COMPOSED operations in the MS-SQL DBMS and the
JOXM. The registerCustomer operation inserts a row of the 9 columns and
the registerAccount inserts a row of the 5 columns. The JOXM is
influenced enormously by the number of columns. The modifyCustomer
which is the UPDATE operation is 4 times lower in the JOXM and 6
times in the others than INSERT operation. The unregisterCustomer which
1s the DELETE operation is 4 times lower than the INSERT operation.
The deposit and withdrawal which were the COMPOSED operation
includes addition, and subtraction then inserts the variation into another
table. In this time, regardless of the type of the additional operation, the
performance of the COMPOSED operation is 3.5 times lower in the JOXM
and 11 times in others than the INSERT operation. As a result, in the
MS-SQL DBMS, the DOI framework which is employed in proposed
framework has the highest performance, and the iBatis, Hibernate, JOXM

by turns.

JOXM-withdrawal
Hibernate-withdrawal
iBatis-withdrawal
DOl-withdrawal
JOXM-deposit
Hibernate-deposit
iBatis-deposit
DOI-deposit
JOXM-unregisterCustomer
Hibernate-unregisterCustomer
iBatis-unregisterCustomer
DOI-unregisterCustomer
JOXM-modifyCustomer

MSSQL And JOXM

177.4083147
19.10446104
19.55075551
17.82457825
177.4336136
19.16491165
19.7643235
17.28503285
218.7035352
7.31296313
7.170301703
6.82903829
195.4657911

Hibers
iBatis-modifyCustomer
DOI-modifyCustomer
JOXM-registerAccount
Hibernate-registerAccount
iBatis-registerAccount
DOI-registerAccount
JOXM-registerCustomer
Hibernate-registerCustomer

difyCustomer

iBatis-registerCustomer
DOI-registerCustomer

10.50622506
10.41317413
10.32603326
6.54280557
1659756598
1544605446
1.29203292
5241250449
1733217332
1624736247
1572855729

0 50 100 150 200 250

Average Time(ms)

Fig. 20. INSERT, UPDATE, DELETE operations in the MS-SQL and JOXM

Fig. 20. shows performance evaluation of the INSERT, UPDATE,
DELETE, and COMPOSED operations in the MySQL DBMS. It performs
the best the DOI on the INSERT and DELETE operations and the
Hibernate on the UPDATE operation, and the iBatis on the COMPOSED
operation. The DOI shows lowest performance on the COMPOSED

operation but it shows generally high performance.

MysaL

20.08410445
19.86110716

Hibernate-withdrawal
iBatis-withdrawal
DOl-withdrawal
Hibernate-deposit
iBatis-deposit
DOl-deposit
Hibernate-unregisterCustomer
iBatis-unregisterCustomer
DOl-unregisterCustomer
Hibernate-modifyCustomer
iBatis-modifyCustomer
DOI-modifyCustomer
Hibernate-registerAccount
iBatis-registerAccount
DOl-registerAccount
Hibernate-registerCustomer
iBatis-registerCustomer
DOl-registerCustomer

41.05527648
21.82490696
20.99300401
40.59230034
20.0425454
20.14698705
19.40437453
19.29574343
19.54460963
20.25848569
2149765105
20.59286978
19.14599052
20.15730817
20.93241952
19.32092087

0 10 20 30 40 50

Average Time(ms)

Fig. 21. INSERT, UPDATE, DELETE operations
in the MySQL

Fig. 20. shows performance evaluation of the INSERT, UPDATE,
DELETE, and COMPOSED operations in the Oracle DBMS. The iBatis
performs the best on the INSERT, UPDATE, DELETE operations but the
DOI has higher performance on the COMPOSED operation. Especially, on
the withdrawal operation, the DOI performs 3 times higher than the

Hibernate and 1.3 times than the iBatis.

Oracle

Hibernate-withdrawal 6.322948791

iBatis-withdrawal 2.893473056
DOl-withdrawal 2.192653384
Hibernate-deposit 3.600348969
iBatis-deposit 3.022297517
DOl-deposit 2.194337364
Hibernate-registerAccount 1631867797
iBatis-registerAccount 1642458611
DOl-registerAccount 1.967131959
Hibernate-unregisterCustomer 2446528567
iBatis-unregisterCustomer 1903029135
DOl-unregisterCustomer 2.097833144
Hibernate-modifyCustomer 1.721128875
iBatis-modifyCustomer 1.662798247
DOI-modifyCustomer 2.055246713
Hibernate-registerCustomer 1.772804739
iBatis-registerCustomer 1.740798977

DOl-registerCustomer 2.166612563

0 1 2 3 4 5 6 7

Average Time(ms)

Fig 22. INSERT, UPDATE, DELETE operations

in the Oracle
@ SELECT operation(Point query, Ranged query)

The SELECT operation is tested separately as the ranged query which
fetches 100 rows and point query which fetches a row associated with
specific id value on the Customer table. Fig. 23. shows tests on the
SELECT operation in MS-SQL. Operations ends with ’client’ is receive
time of the client. On the point query, the DOI has about 52 times higher
performance than the iBatis or the Hibernate. The network duration is
similar in most of the framework but the iBatis is 2 times slower than the
others on the ranged query. On the ranged query, the DOI has 1.2 times

higher performance than the iBatis and 2 times than the Hibernate.

Eventually, on the SELECT operation in the MS-SQL, the DOI shows the

highest performance.

MssQL

Hibernate-selectCustomerByldNetwork
iBatis-selectCustomerByldNetwork
DOk-selectCustomerByldNetwork
Hibernate-selectCustomerByld
iBatis-selectCustomerByld
DOI-selectCustomerByld
Hibernate-selectCustomerByld-client
iBatis-selectCustomerByld-client
DOl-selectCustomer8yld-client
Hibernate-selectCustomerNetwork
iBatis-selectCustomerNetwork
DOl-selectCustomerNetwork
Hibernate-selectCustomer
iBatis-selectCustomer
DOl-selectCustomer

15.9398494
16.0096401
15.51782518

11.73840738
11.97501975
0.211232112
27.67825678
27.98465985
15.72905729
15.52216522
29.20354204
15.48453485
31.25267253
18.05459055
15.7698377
Hibernate-selectCustomer-client 46.77483775
iBatis-selectCustomer-client

DOl-selectCustomer-client 31.25437254

o 5 10 15 20 25 30 35 40 45 50

Average Time(ms)

Fig. 23. SELECT operation in the MS-SQL

Fig. 24. shows the performance evaluation on SELECT operation in the
MySQL. By the specific faults of the JDBC driver, the DOI shows worst
performance because another frameworks fetches result set from the
memory but the DOI fetches from the physical disk. However, if this
operation evaluates in the C language, the DOI shows 5 times higher

performance than another ORM.

MysQaL

Hibernate-selectCustomerByldNetwork
iBatis-selectCustomerByldNetwork
DOl-selectCustomerByldNetwork
Hibernate-selectCustomerByld

lectCl 8yld

15.47862479
15.4699547
15.5432
0.002470025

0.

DOl-selectCustomerByld 126.0006
Hibernate-selectCustomerByld-client 15.48109481
iBatis-selectCustomerByld-client 15.4798448
DOl-selectCustomerByld-client 1415438

Hibernate-selectCustomerNetwork
iBatis-selectCustomerNetwork
DOl-selectCustomerNetwork
Hibernate-selectCustomer
iBatis-selectCustomer
DOl-selectCustomer
Hibernate-selectCustomer-client

15.54484545
15.88825888
17.18430184
1564421644
15.64268643
126.5102551
31.18906189
iBatis-selectCustomer-client 31.53094531

DOl-selectCustomer-client 143.6945569

0 20 40 60 80 100 120 140 160

Average Time(ms)

Fig. 24. SELECT operation in the MySQL

Fig. 25 shows the performance evaluation on SELECT operation in the

Oracle. On the point query, the Hibernate and iBatis seems even better but

it's little difference around 0.019ms. On the other hand, the DOI is 82
times better than the others on the ranged query and the time difference is
about 15 ms. As a result, we can know the DOI shows higher performance

than any other frameworks.

Oracle

Hibernate-selectCustomerByldNetwork
iBatis-selectCustomerByldNetwork
DOl-selectCustomerByldNetwork

1547188472
15.47126471
1547223472

Hibernate-selectCustomerByld
iBatis-selectCustomerByld
DOl-selectCustomerByld

0.001080011
0.001080011
0.023080231

Hibernate-selectCustomerByld-client
iBatis-selectCustomerByld-client
DOl-selectCustomerByld-client
Hibernate-selectCustomerNetwork
iBatis-selectCustomerNetwork
DOl-selectCustomerNetwork
Hibernate-selectCustomer
iBatis-selectCustomer
DOI-selectCustomer
Hibernate-selectCustomer-client
iBatis-selectCustomer-client
DOI-selectCustomer-client

15.47296473
15.47234472
1549531495
15.60930609
15.84865849
15.6401564
15.66163662
1562821628
0.194051941
31.27094271

15.83420834

0 5 10 20 25

Average Time(ms)

Fig. 25. SELECT operation in the Oracle

3. Implementation

1) Lightweight service repository

The DOKDO-WS framework satisfies most requirement for the service
repository that was mentioned in [2]. The binary size is 128Kbytes and
has faster initialization. Components which is provided as the API can be
used without modification and services on existing infrastructure are no
need to change and can be reused.

Service providers can register, modify, and remove services through
normal web browser and the consumers can identify instantly the
modifications. Because some other service registry can be offered as a

service, it's easy to integrate with any other web service registry.

Moreover, since the service provider directly affords the web service

registry, it is difficult to be served unsuitable services. Local services
depend on the specific service in the current domain and the service

provider can serve remote services in the equal domain.

2) Domain Object mapping

It links among the domain objects, the DBMS and the XML through a
simple meta model. A primitive data type defined and it performs the
serialization or deserialization of data objects and the marshalling or
unmarshalling of service instances. The type conversion of domain objects
are fulfilled by the transformer service. It also automatically generate
operations to access easily to the persistence layer. Complex persistence

operations can be registered manually by the service provider.

3) Dynamic composition

Services can be dynamically composed in the service execution layer and
view layer. Fig. 26. shows an composition algorithm in the service
execution layer. In the service execution layer, a dynamic proxy which has
been added execution code before and after for operations going to be
execute would provide as a service instance. The dynamic proxy is
generated by injection using the Reflection or modification of the byte code

using the AOP.

Let S = {B, A}, D = {s0, sl, s2, ... sn} where S is a Service Prototype, s is Service
Instance and D is Dynamic Proxy which is mixed of s. HI and TI means Host group id
and target group id.

WIGI] is the set of Services stored in WSDLRepository.

[:] is instantiation operator

[T] is type operator

[«<] is assignment

Input : [Host Group Id] and [Target Group Id(TI), Position]

Output : Dynamic Proxies

01 foreach Sh in W[HI]

02 D[HI] < :Sh

03 foreach St in W[TI]

04 if 7Sh = B then D[HI].B U St

05 else D[HI].A U St

06 end if

07 end foreach

08 end foreach

09 return D

Fig. 26. Composition algorithm in the service execution layer

Fig. 27. shows an composition algorithm in the service view layer. In the
service view layer, it composes a service group that is generated by
functions based on functional language. Service prototypes in the service
model layer has no declarations of the functional group for the success and
failure. However, in service view layer, since it uses the function as the
first class object so it can dynamically create functional groups. A
functional group which has the success or failure function acts as a
composed service instance. Besides, it can access the configuration about

the composition in runtime and can generate funcation groups.

Let E = {S, F}, E, F = {{0, {1, 2, ... fn} where E is a Service Execution Function
Group, S is set of succeed Functional Factor and F has opposite meaning.
WIGI] is the set of Services stored in WSDLRepository.

Input : [Host Group Id] and [Target Group Id(TI), Position]

Output : Execution Function Group

01 foreach W[HI] Sh

02 foreach W[TI] St, E

03 ES U StS

04 EF U StF

05 end if

06 end foreach

07 end foreach

08 return E

Fig. 27. Composition algorithm in the service view layer

The dynamic proxy in the service execution layer has better performance
and it can be accessed as single service in the service view layer.
Furthermore, it is easy to detect errors. However, it is difficult to modify
byte code directly on the AOP so it is a better way to create a dynamic
proxy by the Reflection. On the other hand, composition in the service
view layer has lower performance and it is hard to detect errors but it

provides convenience and scalability.

4) Flexible execution

Since it obtains meta data and generates WSDL by the Reflection,
existing components can be published easily as web service. In this
process, there is no need for additional tool and it can use existing
infrastructure without modification. It supports the session to maintain
context when the service has executed the overload functionality which
make possible that invoke operation with the same name but different

parameters in the same service instance. Moreover, it can invoke services

whether it is the local or remote service and the end-point URL for the
local service is automatically generated so the service provider doesn’t

need to care anything about it.

5) Web service browser

Fig. 28. shows the web service browser which is fundamental service. It
displays every services classified by remote and local services in the
WSDL repository by the DOIMetaService of the meta service group. Since
service lists are returned in form of the XML so it is transformed into
user interface by using the XSLT processor service in the view layer. The
web service provider selects and executes services through the template

supported by framework which would be published.

Operations ¥

Operations

e List - Local

second

GreetService -] 2

session

- - Al
SessionSenvice v] =&

test

TestService -] 28

third

OracleDAOSenice =] &8

first

GreetService -] 22

meta

DOIMetaService -] &8

Service List - Remote

remote

Fig. 28. Basic web service browser

Fig. 29 is an interface which enumerates operations in a service. If the
operation has parameters, it supports an input form which can execute
operation of the service. If the service instance is a child instance of the
AbDOIService, it must have getSessionld(), isWarmed() method. It makes
service instance be able to apply objects for connection to DBMS, request,

response, and session.

opl:| op2:| wl
name I— doGreet
testArray
testCollection
testDoublyArray
testVoid
opl:] op2: | add
opl: I op2: I M
opl II op2: | multiply
getSessionld
isWarmed

Fig. 29. Enumerate service operations

Fig. 30. shows a returned XML document from execution of the local

service which directly executes a service instance.

- <results>
- <returnl>
<iteml=Apple</item1>
<item1=Pine Apple</item1>
<iteml=Melon</itemi1>
</returnl>
- <returnl>
<item1>8t2</iteml>
<item1>BMH</iteml>
<item1>F LM </item1>
</returnl>
- <returnl>
<iteml=>1</itemls>
<iteml>2</iteml>
<item1>3</iteml>
</returnl>
</results>

Fig. 30. Execution of the web service - local

The remote service makes equal forms with Fig. 29 but it is different
when it executes an operation. Fig. 31. shows a SOAP message which
returned as execution result of the remote service. A remote service
extracts operations from the WSDL document and then send a SOAP

request after constructing new context.

- <soapenv:Envelope xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"

xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmins:doi="http://javawide.com/DOI">
- <soapenv:Body>

- <ns:minusResponse xmins:ns="http://localhost/DOI">

<ns:return>1.0</ns:return=
</ns:minusResponse>

</soapenv:Body>

</soapenv:Envelope>

Fig. 31. Execution of the web service - remote

Fig. 32 shows that a web service proxy is generated by referencing the
WSDL document in heterogeneous .NET framework. Fig. 33. shows the
returned result from the DOKDO-WS framework which has been

implemented by the Java by a SOAP message.

AHIA URLE 0ISEH CHS [2E 703 235101 A8 JhSE AHIAE 25 SJRILIC
OFE O M & &

URL(U): |http://Iocalhos(/DOI/tirst.GreetService.doi?type:WSDL&Iocal:loc:L] Jos
= 0] URLKIA =2 8 AMHIA(8):

i ice" AdD
first.GreetService" 413 e ROE ST =
HAS - first. GreetService

add (opI Asint, op2 Asint) As double

divide { op! As double , ogp2 As double) As double

doGreet (name As string) As string

getSessionId {) &s string =l
iswarmed () As boolean "

minus (gpd As double , op2 As double) As double 2 Z 01 S
multiply { opf As double , op2 As double) As double [localhost
testArray () As ArrayOfString

testCollection () &s ArrayOfString

testDoublyArray () As ArrayOfString

testDoublyCollection () As ArrayOfString

testVoid () As string

oy
]
4»-

7HR)

= s

Fig. 32. Add reference to .NET framework

Web Service Client

=

Fig. 33. Execution of the .NET web service

V. Conclusion and future work

This paper proposes the DOKDO-WS which can be applied to the web
service environment without much modification on the existing method for
the application development. The web service provider needs a convenient
and scalable framework. However, existing web service framework hasn’t
satisfied with both side of effectiveness and reality and it isn’t also a
lightweight approach. The framework provides functionality to search and
execute services and it should allow user to notify modification of the
service at once in runtime. The service consumers don’t want to be
broken off technology between the legacy web environment and newer
web service and they hope to maintain the previous HTTP request and
response. Therefore, the DOKDO-WS framework supports both the SOAP
and existing HTTP request, response and session to maintain state

through execution of the web service.

The DOKDO-WS framework automates data modeling and persistence
operations such as the INSERT, READ, UPDATE, DELETE. The business
logic in the web service based application can be greatly different with
what programming language is used and where it deployed but the data
model is scarcely changed. The ER model is used yet and it is hard to
save and restore whole semantic data models in form of the XML. In the
performance evaluation, the XML based approach greatly showed poor
performance on those operations. In this paper, we take both advantages
that one is the performance from the ER model and another is scalability
from the XML based language, which we proposed XML schema based
models of the service, data, and view. Although the used domain model is
not a standard such as the RDF and OWL, the service provider may
manage any domain model since the DOI can handle all XML based
domain model.

The future works are about the support of the standard session, the
cache problem and the inference engine for semantic web. Current session
implementation are partially designed and support restricted realization
which can be used only in some specific environment so the standard
WS-Session will be implemented in the future. As showed in the
performance evaluation, the framework has higher performance compared
with the others. It can obtain more performance by employing cache. The
inference engine will be added to dynamic composition engine which is

currently implemented and it will be used to realize semantic web.

References

[1] Okkyung Choi, Jungwoo Lee, Sangyoung Han, Advanced Web Services Retrieval System using Matchmaking
Algorithm. Journal of the Korea Intelligent Information Systems Society, Volume 13. No 3 pp. 1~15. 2007
[2] Martin Treiber, Schahram Dustdar, Active Web Service Registries, IEEE Internet Computing, Volume 11, Issue
S, pp. 66 - 71, 2007
[3] Jianxun Liu, Jie Liu, Lian Chao, Design and Implementation of an Extended UDDI Registration Center for Web
Service Graph, IEEE International Conference on Web Services, pp. 1174 - 1175, 2007
[4] Lin Liang, Wenge Rong, Kecheng Liu, Intelligent Agents for Pragmatic Web Services, Sixth International
Conference on Advanced Language Processing and Web Information Technology, pp. 530 - 536, 2007
[5] N.W. Lo, Chia-Hao Wang, Web services QoS evaluation and service selection framework - a proxy-oriented
approach, TENCON 2007 - 2007 IEEE Region 10 Conference, pp. 1 - 5, 2007
[6] Eyhab Al-Masri, Qusay H. Mahmoud, WSCE: A Crawler Engine for Large-Scale Discovery of Web Services,
IEEE International Conference on Web Services, pp. 1104 - 1111, 2007
[7] Jeong-Youn Yu, Kyu-Chul Lee, Ontology describing Process Information for Web Services Discovery, The Journal
of Society for e-Business Studies, Volume 12. No 3, pp. 151 - 175, 2007
[8] Hyun Namgoong, Moonyoung Chung, Kyung-il Kim, HyeonSung Cho, Yunku Chung, Effective Semantic Web
Services Discovery using Usability, Advanced Communication Technology The 8th International Conference
Volume 3, pp. 2199 - 2203, 2006.
[9] Assia Ben Shil, Mohamed Ben Ahmed, Additional Functionalities to SOAP, WSDL and UDDI for a Better Web
Services' Administration, Information and Communication Technologies, ICTTA '06. 2nd. Vol. 1, pp. 572 - 577,
2006
[10] S.M.F.D Syed Mustapha, Relation-Based Case Retrieval Approach for Web Services Selection. IEEE/WIC/ACM
International Conference on Web Intelligence. pp. 644 - 648. 2006

[11] Won-Suk Lee, Jong-Hun Park, Kyu-Chul Lee. The Protocol on WS-ECA Framework, Journal of Korean Society
for Internet Information, Vol. 8. No 6. pp. 55 - 73. 2007

[12] Won-Suk Lee, Dong-Min Shin, Kyu-Chul Lee. Design and Implementation of WS-ECA Framework, The Journal
of the Korean Institute of Maritime Information and Communication Sciences, Volume 11. No 8. pp.1612-1618.
2007

[13] Wu Chou, Li Li, Feng Liu. Web Services Methods for Communication over IP, IEEE International Conference
on Web Services, pp. 372 - 379, 2007

[14] Yanlong Zhai, Hongyi Su, Shouyi Zhan, A Reflective Framework to Improve the Adaptability of BPEL-based

[15]

[16]

[17]

(18]

[19]

[20]

(25]

(26]

(27]

(28]

Web Service Composition, IEEE International Conference on Services Computing, Vol. 1, pp. 343 - 350, 2008
Freddy Lecue, Alexandre Delteil, Alain Leger, Applying Abduction in Semantic Web Service Composition,
IEEE International Conference on Web Services, pp. 94 - 101, 2007

Karthikeyan Ponnalagu, N.C. Narendra, Jayatheerthan Krishnamurthy, R. Ramkumar, Aspect-oriented Approach
for Non-functional Adaptation of Composite Web Services, IEEE Congress on Services, pp. 284 - 291, 2007

Hui Kang, Xiuli Yang, Sinmiao Yuan, Modeling and Verification of Web Services Composition based on CPN,
NPC Workshops. IFIP International Conference on Network and Parallel Computing Workshops, pp. 613 - 617,
2007

San-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, Cheng-Hung Chen, On Composing a Reliable Composite Web
Service: A Study of Dynamic Web Service Selection, IEEE International Conference on Web Services, pp. 184
- 191, 2007

Wen-Yau Liang, Apply Rough Set Theory into the Web Services Composition, 22nd International Conference on
Advanced Information Networking and Applications, pp. 888 - 895, 2008

[I-Woong Kim, Kyong-Ho Lee, A Model-Driven Approach for Converting UML Model to OWL-S Ontology,
Journal of KISS:Computing Practices and Letters, Vol. 13, No 3, pp. 179 - 192. 2007

Yongyan Zheng, Paul Krause. Asynchronous Semantics and Anti-patterns for Interacting Web Services, Sixth
International Conference on Quality Software, pp. 74 - 84, 2006

W.L Yeung, Mapping WS-CDL and BPEL into CSP for Behavioral Specification and Verification of Web
Services, 4th European Conference on Web Services, pp. 297 - 305, 2006

Juil Kim, Woojin Lee, Kiwon Chong, A Tool to Construct a Web Service by Synthesizing Several Web
Services, International Conference on Hybrid Information Technology, Vol 2, pp. 530 - 535, 2006

Feng Liu, Gesan Wang, Li Li, Wu Chou, Web Service for Distributed Communication Systems, IEEE
International Conference on Service Operations and Logistics, and Informatics, pp. 1030 - 1035, 2006

Wu Chou, Li Li, Feng Liu. Web Services for Service-Oriented Communication, International Conference on
Collaborative Computing: Networking, Applications and Worksharing, pp. 1 - 8, 2006

Ricardo Lemos Vianna, Maria Janilce Bosquiroli Almeida, Liane Margarida Rockenbach Tarouco, Lisandro
Zambenedetti Granville, Investigating Web Services Composition Applied to Network Management, International
Conference on Web Services, pp. 531 - 540, 2006

Sam Chung, Jennifer R. Pan, Sergio Davalos, A Special Web Service Mechanism : Asynchronous .NET Web
Services, Telecommunications, International Conference on Internet and Web Applications and
Services/Advanced. pp. 212 - 212. 2006

Costas Vassilakis, George Lepouras, Akrivi Katifori. Web Service Execution Streamlining, International

Conference on Service Systems and Service Management, Vol. 2, pp. 1564-1569. 2006

[29] Federica Paci, Mourad Ouzzani, Massimo Mecella. Verification of Access Control Requirements in Web Services
Choreography, IEEE International Conference on Services Computing, Vol. 1.pp. 5 - 12, 2008.

[30] Hyun Sik Hwang, Hyuk Jin Ko, Kyu Il Kim, Ung Mo Kim. Agent-Based Delegation Model for the Secure Web
Service in Ubiquitous Computing Environments, International Conference on Hybrid Information Technology,
Vol. 1. pp. 51 - 57, 2006

[31] Pat. P.W. Chan, Michael R. Lyu. Dynamic Web Service Composition: A New Approach in Building Reliable
Web Service, 22nd International Conference on Advanced Information Networking and Applications, pp. 20 - 25,
2008

[32] Lei Deng, Jian Wu, Zhengguo Hu. ISCF: A Semantic Web Service Composition Framework Based on OAA, The
3rd International Conference on Grid and Pervasive Computing Workshops, pp. 250 - 255, 2008

[33] Ning Gu, Juntao Cui, Wei Ye, Haixun Wang, Jian Pei. A System Framework for Web Service Semantic and
Automatic Orchestration, 2nd International Conference on Pervasive Computing and Applications, pp. 606 - 611,
2007

[34] Daniel J. Mandell and Sheila A. Mcllraith. Adapting BPEL4AWS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation, Proceedings of the Second International Semantic Conference, Vol
2870 of LNCS. pp. 227 - 247. 2003.

[35] Rohit Aggarwal, Kunal Verma, John Miller, William Milnor. Dynamic Web Service Composition in METEOR-S,
LSDIS Lab Technical Report. 2004

[36] Evren Sirin, Bijan Parsia, James Hendler. Template-based Composition of Semantic Web Services. AAAI Fall
Symposium on Agents and the Semantic Web. 2005

[37] John Domingue, Liliana Cabral, Farshad Hakimpour, Denilson Sell, Enrico Motta. IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web Services, Proceedings of the Workshop on WSMO
Implementations. 2004

[38] Denilson Sell, Farshad Hakimpour, John Domingue, Enrico Motta, Roberto C.S. Pacheco. Interactive Composition
of WSMO-based Semantic Web Services in IRS-III. Proceedings of the First AKT Workshop on Semantic Web
Services. 2004

[39] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, Dana Nau. HTN Planning for Web Service Composition
Using SHOP2. Web Semantics: Science, Services and Agents on the World Wide Web, Vol. 1, No. 4. pp.
377-396. 2004

[40] Shankar R. Ponnekanti, Armando Fox. SWORD: A Developer Toolkit for Web Service Composition, Proceedings
of the 11th International World Wide Web Conference, 2002

[41] Harald Meyer, Hagen Overdick, Mathias Weske. Plaengine: A System for Automated Service Composition and

Process Enactment, Proceedings of the WWW Service Composition with Semantic Web Services, p. 3-12. 2005

[42] Muhammad Ahtishame Aslam, Jun Shen, S6ren Auer, Michael Herrmann. An Integration Life Cycle for Semantic
Web Services Composition. 11th International Conference on Computer Supported Cooperative Work in Design,
pp. 490 - 495, 2007

[43] Jin-han Kim, Chang-ho Lee, Jac-Jeong Lee, Byung-Jeong Lee. A Framework For Web Service Evolution using
UML and OWL-S. Journal of Digital Contents Society, Vol. 8. No 3. pp.269-277. 2007

[44] Matt Bone, Peter F. Nabicht, Konstantin Laufer and George K. Thiruvathukal. Taming XML: Objects First, Then
Markup, IEEE International Conference on Electro/Information Technology, pp. 488 - 493, 2008

[45] Konstantin Léaufer. A Stroll through Domain-Driven Development with Naked Objects, Computing in Science &
Engineering Vol 10. Issue 3. pp. 76 - 83, 2008

[46] Angela Nicoara, Gustavo Alonso. Making Applications Persistent at Run-time, IEEE 23rd International
Conference on Data Engineering, pp. 1368 - 1372, 2007

[47] Fabio Dias Fagundez, Ricardo Niederberger Cabral, Gustavo Melim do Carmo. Decoupling Relational Database
from Object Oriented Layers, Fourth International Conference on Information Technology, pp. 870 - 871. 2007

[48] Vit Vrba, Lubomir Cvrk, Vit Novotny, Karol Molnar. Architecture of a universal relation data source for web
applications with advanced access control and simplified migration, Proceedings of the International Conference
on Software Engineering Advances. pp. 68 - 68. 2006

[49] Adam Dukovich, Jimmy Hua, Jong Seo Lee, Michael Huffman, Alex Dekhtyar. JOXM: Java Object - XML
Mapping, 8th International Conference on Web Engineering. pp. 332 - 335, 2008

[50] Andrea D'Ambrogio. A Model-driven WSDL Extension for Describing the QoS of Web Services. International
Conference on Web Services, pp. 789 - 796, 2006

[51] William R. Cook, Janel Barfield. Web Services versus Distributed Objects : A Case Study of Performance and

Interface Design, International Conference on Web Services. pp. 419 - 426, 2006

